Zinc-Mediated Transactivation of TrkB Potentiates the Hippocampal Mossy Fiber-CA3 Pyramid Synapse
نویسندگان
چکیده
The receptor tyrosine kinase, TrkB, is critical to diverse functions of the mammalian nervous system in health and disease. Evidence of TrkB activation during epileptogenesis in vivo despite genetic deletion of its prototypic neurotrophin ligands led us to hypothesize that a non-neurotrophin, the divalent cation zinc, can transactivate TrkB. We found that zinc activates TrkB through increasing Src family kinase activity by an activity-regulated mechanism independent of neurotrophins. One subcellular locale at which zinc activates TrkB is the postsynaptic density of excitatory synapses. Exogenous zinc potentiates the efficacy of the hippocampal mossy fiber (mf)-CA3 pyramid synapse by a TrkB-requiring mechanism. Long-term potentiation of this synapse is impaired by deletion of TrkB, inhibition of TrkB kinase activity, and by CaEDTA, a selective chelator of zinc. The activity-dependent activation of synaptic TrkB in a neurotrophin-independent manner provides a mechanism by which this receptor can regulate synaptic plasticity.
منابع مشابه
The Two Sides of Hippocampal Mossy Fiber Plasticity
Two studies in this issue of Neuron (Kwon and Castillo and Rebola et al.) show that the mossy fiber-CA3 pyramidal neuron synapse, a hippocampal synapse well known for its presynaptic plasticity, exhibits a novel form of long-term potentiation of NMDAR-mediated currents, which is induced and expressed postsynaptically.
متن کاملLong-Term Potentiation Selectively Expressed by NMDA Receptors at Hippocampal Mossy Fiber Synapses
The mossy fiber to CA3 pyramidal cell synapse (mf-CA3) provides a major source of excitation to the hippocampus. Thus far, these glutamatergic synapses are well recognized for showing a presynaptic, NMDA receptor-independent form of LTP that is expressed as a long-lasting increase of transmitter release. Here, we show that in addition to this "classical" LTP, mf-CA3 synapses can undergo a form ...
متن کاملPii: S0306-4522(00)00146-9
The hippocampal mossy fiber pathway between the granule cells of the dentate gyrus and the pyramidal cells of area CA3 has been the target of numerous scientific studies. Initially, attention was focused on the mossy fiber to CA3 pyramidal cell synapse because it was suggested to be a model synapse for studying the basic properties of synaptic transmission in the CNS. However, the accumulated b...
متن کاملAma“Zinc” Link between TrkB Transactivation and Synaptic Plasticity
While Trk receptors can be activated in a neurotrophin-independent manner through "transactivation" by GPCR ligands, its physiological significance in the brain remains unknown. Huang et al. have now identified a novel mechanism of TrkB transactivation. They show that zinc ions can transactivate TrkB independent of neurotrophins and that such a transactivation is important for mossy fiber long-...
متن کاملVesicular Zinc Promotes Presynaptic and Inhibits Postsynaptic Long-Term Potentiation of Mossy Fiber-CA3 Synapse
The presence of zinc in glutamatergic synaptic vesicles of excitatory neurons of mammalian cerebral cortex suggests that zinc might regulate plasticity of synapses formed by these neurons. Long-term potentiation (LTP) is a form of synaptic plasticity that may underlie learning and memory. We tested the hypothesis that zinc within vesicles of mossy fibers (mf) contributes to mf-LTP, a classical ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 57 شماره
صفحات -
تاریخ انتشار 2008